
Chapter 2 Shielding of Electrons and Photons at Accelerators 

In this chapter the major features of the shielding of electrons and photons at accelerators 
are described. It includes extensive discussion of the electromagnetic cascade and a 
discussion of the shielding of photoneutrons and high energy particles that result from 
these interactions. The chapter concludes with a treatment of the generalized shielding 
problem with specific attention given to the Monte-Carlo method and with a brief 
summary of magnetic deflections of charged particles which are of general applicability 
to radiation protection at particle accelerators. 

I. The Electromagnetic Cascade-Introduction 

The major feature that needs to be considered in the shielding design at electron 
accelerators is the electromagnetic cascade. One should recall the definitions of critical 
energy, EC and radiation length, X0, that were given in Eq. (1.20) and (1.22). Another 
parameter of importance for describing the electromagnetic cascade is the Molikre 
radius, Xm: 

&l = XoEJEc (2.1) 

where Es = (&Zi)mec2 = 21.2MeV, (2.2) 

where cx is the fine structure constant (see Table 1. l), and m, is the mass of the electron. 
X,,, is a good characteristic length for describing radial distributions in electromagnetic 
showers. Two more dimensionless scaling variables are commonly introduced to 
describe electromagnetic shower behavior; 

t = x/x, (distance) (2.3) 

and y = E/E, (energy). (2.4) 

For mixtures of II elements these quantities and the stopping power dE/dx scale according 
to the elemental fractions by weight,fi , as follows, according to the Particle Data Group 
(PDG96): 

(2.5) 

where all stopping powers are expressed as energy loss per unit area1 density (e.g., MeV 
cm2 g-l). For convenience, as defined in Chapter 1, 

EC = SOO/(Z + 1.2) (MeV), 

andXo= 
716.4A 

Z(Z + 1) ln(287 / &) (g cm-2)’ (2.7) 
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Another term employed is that of the so-called Compton minimum which, as the term is 
generally used, is the energy at which the total photon cross section is at a minimum and 

the photon mean free path, &, is thus, a maximum. The use of this term is somewhat 
inaccurate since at the higher energies the Compton scattering cross section 
monotonically decreases with energy. This value always occurs at energies less than EC 
and is typically a few MeV. Figures 2.1 and 2.2 give values of the photon mean free path 
for a variety of materials. 

For high energy photons (E. > 1 GeV), the total e+e- pair production cross section, C+air, 
is approximately given, for a single element, by 

(cm2>, (2.8) 

where A is the atomic weight, NA , is Avagadro’s number, and X0 is the radiation length 
expressed in units of g/cm 2. For energies larger than a few MeV, the pair production 
process dominates the total photon attenuation. The interaction length for pair 
production, ;Ipair , is thus given by 

a P P 9 
pair = - NJg 

cm2) = =- 7xo, 
-- 

(2.9) 

where the symbols all have the same meanings as used previously. This result, along 
with the facts about photon production by electrons interacting in matter, leads to the 
most important fact about the electromagnetic cascade: 

The electrons radiatively produce photons with almost the same 
characteristic length for which the photons produce more e+ e’ pairs. 

This is so important because as a first order approximation it means that the “size” in 
physical space is independent of energy. For hadronic cascades, we will see that the 
result is considerably different. 

Before discussing further the electronmagnetic cascade process in detail, one must look a 
bit more at the dose equivalent due to thick-target bremsstrahlung dose at large values of 
8 for targets surrounded by cylindrical shields. This has been done by Swanson and 
Thomas (Sw90) with improvements suggested by Nelson (Ne97). A picture of the 
situation is given in Fig. 2.3. Without including the attenuation by shielding, the 
normalized differential yield, dN/dQ, per incident electron of photons of all energies is 
given by: 

$g = 4.76E, exp(-80*6) + l.O8exp(8 / 72) (photons si’ GeV’ electron-‘), (2.10) 
0 
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while the absorbed dose per incident electron, D, external to shielding is described by, 

D(0) = (1 x 10-15)~0.2Eo exp(-8°.6) + 2.3exp(0/72))E, 

(Gy/electron). 

These expressions are based on results involving iron and copper targets at Eo = 15 GeV. 
In these equations, E. is in GeV, 8 is in degrees, a is the target-to-shield distance 
(meters), d is the shield thickness (meters), p is the shielding material density (kg mm3), 
and p/p is the attenuation coefficient equal to the value at the “Compton minimum” 
which for concrete is 2.4 x 10” m2kg-‘. The formulae implicitly assume a dose 
equivalent per unit fluence appropriate at the shower maximum. For conditions of no 
shielding present (d = 0), the values are within factors of 2 to 5 of those obtained using 
Eq. (1.25-1.27). Armed with this useful parameterization, we shall now proceed to 
further discussion of the details of development of the electromagnetic cascade. 

Id 

- - Hz0 

Fig. 2.1 Photon mean free path as a function of photon energy in various materials for low energies. 
[Adapted from (PDG96).] 
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Fig. 2.2 Photon mean free path as a function of photon energy in various materials for high energies. 
[Adapted from (PDG96).] 
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Fig. 2.3 Target and shielding geometry for the estimation of dose equivalent due to electron beam 
interactions with a target surrounded by shielding. L is the length of the target and the other 
parameters specify the geometry. 
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II. The Electromagnetic Cascade Process 

In the most simple terms, the electromagnetic cascade at an electron accelerator proceeds 
qualitatively according to the following steps: 

1. A high energy electron (Eo >> mc2) produces a high energy photon by 
bremsstrahlung. 

2. This photon produces an e+ e- pair after traveling, on average, a distance of X0. 
Each member of the pair will have, on average, half the energy of the photon. 

3. After traveling an average distance of X0, each member of the e+ e- pair will 
produce yet another bremsstrahlung photon. 

4. Each electron or positron may continue on to interact again and release yet more 
photons before its energy is totally absorbed. 

This chain of events can equally well be initiated by a high energy photon, even one 
produced in secondary interactions at a hadron accelerator. Eventually, after a number of 
generations, the individual energies of the electrons and positrons will be degraded to 
values below E, so that ionization processes then begin to dominate and terminate the 
shower. Likewise, the photon energies eventually are degraded so that Compton 
scattering and the photoelectric effect compete with the further production of e+ e- pairs. 
Figure 2.4 schematically shows the basic electromagnetic cascade process. 

Of course, there are subtleties representing many different physical processes, such as the 
production of other particles, which must be taken into account and are best handled by 
Monte-Carlo calculations. The most widely-used code incorporating the Monte-Carlo 
method applied to electromagnetic cascades is EGS (electron gamma shower) which was 
written by W. R. Nelson and described by Nelson et al. (Ne90).’ A. Van Ginneken has 
also written a Monte-Carlo program called AEGIS (Va78) which is very effective for 
calculating the propagation of such cascades through thick shields. At the end of this 
Chapter, the Monte-Carlo Method will be reviewed. Analytical approximations have 
been developed and are summarized elsewhere [e.g., (Sw79)]. The results of published 
calculations are used in the following discussion to aid in improving the reader’s 
understanding of electromagnetic cascades. 

Longitudinal shower develonment 

The dosimetric properties of the calculations of an electromagnetic cascade may be 
summarized in curves that give fluence, dose, or other quantities of interest as functions 
of shower depth or distance from the axis. Figure 2.5 shows the fraction of total energy 

‘Monte-Carlo programs exist, in general, in a state of nearly continuous improvement. Thus the authors of 
such codes should be contacted to provide the current version. 
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deposited (integrated over all radii about the shower axis) versus depth from Van 
Ginneken and Awschalom (Va75). These authors identified a scaling parameter, 5, 
given by: 

< = 325(lr~Z)-~~~~hrE~ (g cm-2), (2.12) 

where E0 is in MeV. When longitudinal coordinates are expressed in units of c,, all 
curves merge approximately into this universal one and are rather independent of target 
material. 

Rossi and Griesen (Ro41), in their development of analytical shower theory, have 
predicted, using their so-called “Approximation B”, that the total number of electrons and 
positrons at the shower maximum, Nshow are proportional to the primary energy as 
follows for an electron-initiated shower: 

N show = 
0.31Eo/E, 

,/ln(Eo/E,) - 0.37 (2.13) 
This is intuitively sensible as the final outcome of the shower is to divide the energy at 
maximum among a number of particles with energies near EC . For a photon-initiated 
shower, the constant of 0.37 in the denominator becomes 0.18. One can obtain the 
maximum energy deposited per radiation length from Eq. (2.13) as the product EcNshow 
(Sc90). 

Also from Approximation B, the location of the shower maximum X,, , (along the 
longitudinal axis usually represented by the z-coordinate) should be given by: 

withC= 1. (2.14) 

Experimentally, Bathow, et al. (Ba67) found that values of C = 0.77 for Cu and C = 0.47 
for Pb fit data better. Also, photon-induced showers penetrate about 0.8 radiation lengths 
deeper. Schopper et al. (Sc90) simply give values of C = 1 and C = 0.5 for electron- and 
photon-initiated showers, respectively. 

There are slight differences between photon and electron-induced showers but these can 
normally be neglected. The maximum energy deposited per radiation length is simply 
given by multiplying Nshow by the critical energy, EC. Schopper et al (Sc90) gives the 
mean squared longitudinal spread, 9, (mean square distance lateral spread of the shower 
about t = tmax = X&X0.): 

r2 =1.61 -0.2 (electron-induced shower), and (2.15) 

22 =1.61 +0.9 (photon-induced shower). (2.16) 
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EGS4 results tabulated by Schopper et al. (Sc90) have been parameterized to determine 
“source terms”, Si, for longitudinal absorbed dose and dose equivalent in materials over 
the energy region of 1 GeV < E, < 1 TeV. This has been done for the dose on the z- axis 
(subscripts “a”) and for the dose averaged over a 15 cm radius about the z -axis 
(subscripts “15 ‘I). Table 2.1 gives parameters for calculating dose equivalent, Hlons (Sv 
per electron), at the end of a beam dump of length, L (cm) of density, p (g/cm3), and 
gives fitted values of the various “attenuation lengths”, & (g/cm2) to be used with the 
tabulated values of Si. For absorbed dose calculations, the factor C, which is the ratio of 
dose equivalent in tissue (Sv) to absorbed dose in the material (not tissue) (Gy), should be 
set to unity. The formula in which these parameters from Table 2.1 are to be used is as 
follows: 

Hlong = CSi exp(-pl / &). 

This equation is valid in the longitudinal region beyond the shower maximum. 

(2.17) 

Lateral shower development 

Figure 2.6 shows the fraction U/E, of the incident electron energy which escapes 
laterally from an infinitely long cylinder as a function of cylinder radius, R, for showers 
caused by electrons of various energies which bombard the front face of the cylinder. On 
this graph R is in units of X, . The curve which fits data between 100 MeV and 20 GeV 
for electrons incident on targets ranging from aluminum to lead is given by 

u(RLoxm) = OBexp[-3.45(R / X,)] + 0.2exp[-0.889(R / X,)]. (2.18) 

Results similar to this universal curve have been obtained using EGS4 (Sc90). For large 
values of R/X,,,, a material dependent phenomenon emerges in which the photons having 
the largest mean free paths determined by the photon cross section at the Compton 
minimum will dominate the slopes of these curves. These slopes, normalized to X,, are 
also shown in this figure. As was done for the longitudinal situation, EGS4 (Sc90) has 
been similarly used to give the maximum energy deposition (and by extension, the 
maximum absorbed dose and dose equivalent) as a function of radius R. Over the energy 
range 1 GeV < E, < 1 TeV, there is direct scaling with energy in the formula for dose 
equivalent: 

exp(-p d / alat > 
H lat = CEOSlat 

r2 ’ 
(2.19) 

where HEat is the maximum dose equivalent laterally (Sv per electron), C is the same as 
before, E, is the electron kinetic energy in GeV, Slat is the source term from the EGS4 
calculations (see Table 2.2), d is the lateral dimension of the shield (shield thickness) in 
cm, p is the density (g cm-3), Alat is the attenuation length (g/cmz), and r is the distance 
from the axis, in cm, where the dose equivalent is desired (see Fig. 2.3). Table 2.2 gives 
the parameters needed for Eq (2.19). 
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Table 2.1 Source terms S, and S15, and corresponding 
recommended longitudinal attenuation lengths, & and al5, for 
doses on the axis and averaged over a radius of 15 cm in the 
forward direction for dumps and end-stops. These results are 
most valid in the region of incident electron energy, E,, from 1 
GeV to 1 TeV. Conversion factors C from absorbed dose in the 
shielding material to dose equivalent are given. E, is the beam 
kinetic energy in GeV. These parameters are to be used with Eq. 
(2.17). [Adapted from (Sc90).] 

Material C SLl 5 SIS &Is 
(Sv/Gy) (Gy/electron) (g/cd) (Gy/electron) (s/cm*) 

Water 0.95 1 9x10-‘OE 2.0 
1:9x10-9&3 

58 1 5x10-l lEo2.0 
2.2x10-l lE lJ 

59.9 
Concrete 1.2 44 45.6 
Aluminum 1.2 2.3~10-~E,~.~ 46 3’4x10-11E01.7 46.3 
Iron 1.3 2 ~x~O-*E~~.~ 30 1’8~lO-~~E,o~~~ ’ 33.6 
Lead 1.8 1’9~10-~E,~.~ . 18 4.6~10-%,~.~ 24.2 

Table 2.2 Conversion factors C from absorbed dose in 
shielding material to dose equivalent, source terms SIQ~ for 
the maximum of the electromagnetic component, and 
recommended lateral attenuation lengths &t for the electron 
energy range, E,, from 1 GeV to 1 TeV laterally for dumps or 
end-stops. These parameters are to be used with Eq. (2.19). 
[Adapted from (Sc90).] 

Material C &at illat 
(SV/GY) (Gy cm* GeV” per electron) Wcm*) 

Water 0.95 2.5x10-12 26 
Concrete 1.2 3.6x10-l2 27 
Aluminum 1.2 3.4x10-12 29 
Iron 1.3 4.7x10-11 33 
Lead 1.8 1.3x10-10 26 
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Shielding 
Material 

e- or e+ 

Eo 
photons -----m. 
neutrons . . . . . . . . . ...* 

P ,’ ? 9 ? 

Radiation Lengths (X,) 
Conceptual view of the development of an electromagnetic cascade in a semi-infinite medium 
indicated by the shaded area. The solid lines represent electrons or positrons, the dashed lines 
represent photons, and the dotted lines represent neutrons. The shower is initiated by an 
electron or positron of energy E, incident on the medium from the left. The spreading in the 
transverse direction is greatly exaggerated for clarify. Bremsstrahlung and pair production 
events are denoted by B and P, respectively. Compton scattering and ionization also play a 
roles in the dispersal of energy. Photonuclear reactions, as illustrated by the (‘y, n) reaction at 
point N also play a role, albeit much more infrequently than inferred from this illustration. 
The process could just as well be initiated by a photon. [Adapted from (Sw79).] 
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Fig. 2.5 Fraction of total energy deposited by an electromagnetic cascade versus depth integrated over 
all radii about the shower axis. See Eq. (2.12). [Adapted from (Va75).] 
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Fig. 2.6 Fraction of total energy deposited beyond a cylindrical radius, RLY,,,, as a function of radius, R, 
for showers caused by 0.1 to 20 GeV electrons incident on various materials. The curve 
labeled “Equation” refers to Eq. (2.18). [Adapted from (Ne68).] 
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III. Hadron Production by the Electromagnetic Cascade. 

As discussed before, neutrons are produced by high energy electrons and photons. These 
neutrons must be taken into account to properly shield electron accelerators. Tesch has 
summarized shielding against these neutrons by developing simple analytical relations for 
cases where thick targets are struck by the electron beam (Te88). For lateral concrete 
shielding, the maximum dose equivalent outside of shield thickness, d (cm), which begins 
at radius a (meters) from an iron target struck by electrons having primary energy E, 
(GeV) is, per incident electron, 

H(d,a) = 
4.0 x lo-l7 

(a + Lq2 
E()e-~d’loo (Sv)* (2.20) 

This is valid for I$, > 0.4 GeV and pd > 200 g cm-z. The angular variations are not 
severe because of the nature of the mechanisms by which the neutrons are produced at 
electron accelerators (namely, photoneutron production). For other target materials one 
can scale this equation in the following way. The neutron production is proportional to 
the photoproduction cross section, the track length in cm, and the number of atoms cm-y. 
The interaction cross section is generally proportional to the atomic weight A. Since the 
track length is proportional to X0; the production becomes proportional to the radiation 
length in units of g cm- 2. Thus one can, for rough estimates of dose equivalent in the 
environs of targets of materials other than iron, obtain results by scaling this value for 
iron by the factorf; 

f= 
x, (material) 

X0(iron) ’ 
(2.2 1) 

For shields comprised of other materials, one can simply adjust the attenuation length (g 
cm-z), i.e., the value of 100 g cm-2 in the exponential function, to that appropriate to the 
material. 

Schopper et al. (Sc90) gives a somewhat more detailed treatment separately handling the 
giant resonance neutrons and high energy particle components of dose equivalent while 
deriving “source terms” and appropriate formulas. As above, the geometry for using the 
formulas given here is defined in Fig. 2.3. The formulae given below are held to be valid 
for 1 GeV < E, < 1 TeV and for 30 < 8 < 120 degrees. 

For the giant resonance neutrons, per incident electron, 

4 = %“Eo(~:2,xP(-,~;n6; (sv) 
, 

(222) 

where Eo is the beam energy (GeV), p is the density in g/cm3, a and d are in cm. S, is the 
source term from Table 1.3 (Sv cm2 GeV-I), and ;311 (g/cm2) is the attenuation length 
recommended for giant resonance neutrons. Values of & are given as follows for 
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representative materials. This formula is regarded as being valid for 30 
c 0 c 120 degrees. 

-?!?d&& 
water 9 
concrete 42 
iron 130 
lead 235. 

The factor qn (77, 5 1) is dimensionless and gives an estimate of the efficiency for the 
production of neutrons by the target. It smoothly increases from very small values to 
unity as the target thickness approaches X0. 

For the high energy narticles: 

In this case no correction for target thickness is generally employed. This formula uses 
the same source term as Eq (1.36), per incident electron, 

(2.23) 

In this formula Hh is the dose equivalent due to these particles (Sv), & is the beam energy 
(GeV), A is the atomic weight of the target and ah (gkm2) is the attenuation length 
typical of these particles. Table 2.3 gives values of Ah for representative materials. 
Schopper et al. (Sc90) goes further and describes a variety of special cases. 
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Table 2.3 Attenuation lengths & in g/cm2 for the high energy particle 
component. [Adapted from (Sc90).] 

Material Energy Limit Energy Limit Nuclear Interaction Recommended 
> 14 MeV or > 100 MeV Length Ah [E . (2.23)] 
> 25 MeV Wm2) 9 (g/cm ) 

Wcm2) 

Water 84.9 86 
Aluminum 106.4 128 
Soil (sand) 101...104* 117 99.2 117 

102...105+ 96 
Concrete 101...105* 120 99.9 117 

91 105 
82...100+ 100 

Iron 139+ 131.9 164 
Lead 244+ 194 253 

*Attenuation lengths for the indicated values are slightly dependent on angle with the higher value 
at 8 = O” and the smaller value in the backward direction for E > 15 MeV. 

%ame remark but for E > 25 MeV. 
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IV. Theory of Radiation Transport and the Monte Carlo Method 

The theoretical material in this section is largely due to O’Brien (OB80). It is included to 
show clearly the mathematical basis of the contents of shielding codes, especially those 
that use the Monte-Carlo method. 

General Considerations 

Stray and direct radiations at any location are distributed in particle type, direction, and 
energy. To determine the amount of radiation present for radiation protection purposes 
we must assign a magnitude to this multidimensional quantity. This is done by forming a 
double integral over energy and direction of the product of the flux and an approximate 
flux-to-dose or flux-to-dose-equivalent conversion factor, summed over particle type; 

(2.24) 

where the summation index i is over the various particle types, is the direction vector 
of particle travel, x’ is the coordinate vector of the point in space where the dose or dose 
equivalent is to be calculated, E is the particle energy, t is time, and i is the particle type. 
Pi(E) is the dose equivalent per unit fluence conversion factor expressed as a function of 
energy and particle type. The inner integral is over all energies while the outer integral is 
over all spatial directions from which contribute to the radiation field at the location 
specified by x’ . The result of the integration is H, the dose or dose-equivalent rate at 
location 2 . Values of P&E) are given in Figs. 1.4 and 1.5. The angular flux, 

fi (2, E,& t) , the number of particles of type i per unit area, per unit energy, per unit 
solid angle, per unit time at location 2 , with a energy E, at a time t and traveling in a 

direction is related to the flux density, $i (x’, t) , by integrating over direction, 

to the fluence by integrating over the intervening period of time (ti to tf), 

(2.25) 

(2.26) 

and to the energy spectrum at point 2 at time t by, 

@i(lif,t,E) = f4nd&i(zvE,fi,t). (2.27) 

To determine the proper dimensions and composition of a shield, the amount of radiation 
(expressed in terms of the dose or dose equivalent) which penetrates the shield and 
reaches locations of interest must be calculated. This quantity must be compared with 
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the maximum permissible dose equivalent. If the calculated dose equivalent is too large, 
either the conditions associated with the source of the radiation or the physical properties 
of the shield must be changed. The latter could be a change in shield materials and/or 
dimensions. If the shield cannot be adjusted, then the amount of beam loss allowed by 
the beam control instrumentation, the amount of residual gas in the vacuum system, or the 
amount of beam accelerated may have to be reduced. It is difficult and expensive, 
especially in the case of the larger accelerators, to alter permanent shielding or operating 
conditions if the determination of shielding dimensions and composition has not been 
done correctly. The methods for determining these quantities have been investigated by 
numerous workers. The next section only summarizes the basics of this important work. 

The Boltzmann Eauation 

The primary tool for determining the amount of radiation reaching a given location is the 
Boltzmann equation which, when solved, yields the angular flux,5 , the distribution in 
energy and angle for each particle type as a function of position and time. The angular 
flux is then converted to dose equivalent by means of Eq. (2.24). This section describes 
the theory that yields the distribution of radiation in matter, and discusses some of the 
methods for extracting detailed numerical values for elements of this distribution such as 
particle flux, or related quantities, such as dose, activation or instrument response. The 
basis for this theory is the stationary form of the Boltzmann equation (henceforth, referred 
to simply as the Boltzmann equation) which is a statement of all the processes that the 
corpuscles of various types that comprise the radiation field can undergo. 

The Boltzmann equation is an integrodifferential equation describing the behavior of a 
dilute assemblage of corpuscles. It was derived by Ludwig Boltzmann in 1872 to study 
the properties of gases but applies equally to the behavior of those “corpuscles” which 
comprise ionizing radiation. Boltzmann’s equation is a continuity equation of the angular 
flux,h, in phase space which is made up of the three space coordinates of Euclidian 
geometry, the three corresponding direction cosines and the kinetic energy. The density 
of radiation in a volume of phase space may change in five ways: 

1. Uniform translation; where the spatial coordinates change, but the energy-angle 
coordinates remain unchanged; 

2. Collisions; as a result of which the energy-angle coordinates change, but the 
spatial coordinates remain unchanged, or the particle may be absorbed and 
disappear altogether; 

3. Continuous slowing down; in which uniform translation is combined with 
continuous energy loss; 

4. Decay; where particles are changed through radioactive transmutation into 
particles of another kind; and 
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5. Introduction; involving the direct emission of a particle from a source into the 
volume of phase space of interest: electrons or photons from radioactive 
materials, neutrons from an a-n emitter, the “appearance” of beam particles, or 
particles emitted from a collision at another (usually higher) energy. 

Combining these five elements yields 

Bifi(x’, E,Q,t) = Qj + Q (2.28) 

where the mixed differential and integral operator, Bi , is given by 

Bi =h*V+Oi+di- 

Qu = C f4, d!S’Jfmm dE,Oq (EB + E, h’ + Cl)fj (iv E, hi’, t> 
j 

(2.29) 

(2.30) 

and di = J P l- i2 

ziPic 
(2.3 1) 

Bi is the Boltzmann operator for particles of type i; 

Yi is the number of particles of type i introduced by a source per unit area, time, 
energy, and solid angle; 

O;: is the absorption cross section for particles of type i. To be dimensionally 
correct, this is actually the macroscopic cross section or linear absorption 
coefficient y = Na as defined in Chapter 1; 

di is the decay probability per unit flight path of radioactive particles (such as 
muons or pions) of type i ; 

Si is the stopping power for charged particles of type i (assumed to be zero for 
uncharged particles); 

Qu is the “scattering-down” integral, the production rate of particles of type i with 
a direction d , an energy E at a location x’ , by collisions with nuclei or decay ofj 

-type particles having a direction& at a higher energy EB; 

00 is the doubly-differential inclusive cross section for the production of type-i 

particles with energy E and a direction d from nuclear collisions or decay of 
type-j particles with a direction EB and a direction h’ ; 

pi is the velocity of a particle of type i divided by the speed of light c ; 
and q is the mean life of a radioactive particle of type i in the rest frame. 
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This equation is quite difficult to solve in general and special techniques have been 
devised to yield useful results. The Monte-Carlo method is the most common method of 
solution used in field of radiation shielding. 

The Monte Carlo method-general principles 

The Monte Carlo method is based on the use of random sampling to obtain the solution of 
the Boltzmann equation. It is one of the most useful methods for evaluating radiation 
hazards for realistic geometries that are generally quite complicated to model using 
analytic techniques. The calculation proceeds by constructing a series of trajectories, each 
segment of which is chosen at random from a distribution of applicable processes. In the 
simplest and most widely used form of the Monte Carlo technique, a history is obtained 
by calculating travel distances between collisions, then sampling from distributions in 
energy and angle made up from the cross sections, 

(2.32) 

The result of the interaction may be a number of particles of varying types, energies, and 
directions each of which will be followed in turn. The results of many histories will be 
processed, leading typically to some sort of mean and standard deviation. 

If p(x)& is the probability of an occurrence at x + l/2 dx in the interval, [a,b], then 

is the cumulative probability that the event will occur in the interval [a, x 1, and is 
monotonically increasing, satisfying P(u) = 0, P(b) = 1. If a random number R is 
chosen, uniform on the interval [0, l] from a computer routine, the equation, 

R = P(x), (2.34) 
amounts to a random choice of the value of x, where the distribution function for the 
event P(x) can be inverted, as 

x = P-l(R). (2.35) 
As a simple illustration, to determine when an uncharged particle undergoes a reaction in 
a one dimensional system with no decays (d = 0) or competing processes (S = 0), we note 
from Eq. (1.6) that the particle satisfies 

that in this simple situation reduces to the following, taking in this discussion, CT, to be the 
macroscopic cross section otherwise denoted by Noin this text., 
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B#zd’ z+Nog=o * 
The solution to this equation is the familiar 

(2.37) 

4 = 40 expt-x / 4 , (2.38) 

where 2 = l/Na as in Chapter 1. One can replace x/ii with r, the number of mean-free- 
paths the particle travels in the medium. The differential probability per unit mean-free- 
path for an interaction is given by 

p(r) = ew(-r> (2.39) 
r 

with P(r) = ,fidr’exp(-r’) = -exp(-r’) I’ = 1- exp(-r> = R. 
0 

Selecting a random number, R, then determines a depth r that has the proper distribution. 
By taking into account charged-particle slowing down during passage along Y, the correct 
energy-dependent cross section can be chosen. Of course, quite analogous methods apply 
to other processes described by an exponential such as radioactive decay. In this simple 
case, it is clear that one can solve the above for r as a function of R and thus obtain 
individual values of r from random numbers. For most process, the inversion that is so 
simple in the above might not be possible analytically. In those situations, other 
techniques exemplified by successive approximation and “table look-ups” must be 
employed. 

The next sampling process might select which of several physical processes would occur. 
Another sampling might choose, for instance, the scattering. Deflections by magnetic 
fields might be included as well as further particle production and/or decay. 

The Monte Carlo result is the number of times the event of interest occurred for the 
random steps through the relevant processes. As a counting process it has a counting 
uncertainty and the variance will tend to decrease as the square root of the number of 
calculations run on the computer. Thus high probability processes can be more accurately 
estimated than low probability processes such as passage through an effective shield in 
which the radiation levels are attenuated over many orders of magnitude. Sophisticated 
techniques are employed which temporarily give enhanced probabilities to the low- 
probability events during the calculation in order to study them with the normal 
probabilities restored at the end of the calculation by removing these so-called “weights”. 
It is by no means clear that the distributions obtained using the Monte Carlo method will 
be normally distributed, so that a statistical test of the adequacy of the mean and standard 
deviation may be required. 
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Monte-Carlo Example; A Sinusoidal Angular Distribution of Beam Particles 

Suppose one has a distribution of beam particle particles such as exhibited in Fig 2.7. 
For this distribution, p(8) = A cos 8 for 0 < 8< 7c/2. Then, the fact that the integral of p 
(6) over the relevant interval must be unity implies A = 1 since 

P(ncl2) = k)y2 al2 def 
dBAcosB=AsinB lo = 1. (2.41) 

Then, p(8) = cos 8. The cumulative probability, P(8), is given by: 

P(e) = 5,” dOj@‘) =I,” d0’coa9 =sin 8’ 1: = sin 6’ (2.42) 

If R is a random number, then R = P(B) determines a unique value of B, hence: 

8 = sin-‘(R) (2.43) 

One can perform a simple Monte Carlo calculation using, for example, 50 random 
numbers. To do this one should set up at table such as that given below which was 
generated using a particular set of such random numbers. One can set up a set of bins of 
succesive ranges of &values. The second column is a “tally sheet” for collecting “events” 
in which a random number R results in a value of 8 within the associated range of f?- 
values. emid is the midpoint of the bin (0.1,0.3,...). Column 4 is the normalized number 
in radians found from.: 

Number found in Monte Carlo bin 

N = (Total number of events)(bin width) 

Number found in bin in Monte Carlo 
= 

(50)(0.2 radians) (2.44) 

0 (radians) R (random #) 

I 0.0 - 0.199 
I 

4-l-l44-l-l41 

I 0.2 - 0.399 1 uu M-l-l-111 
I 

0.4 - 0.599 4-l44+l-H1 

0.6 - 0.799 1111 

0.8 - 0.999 &H-&11 

I 1.0 - 1.199 I 1111 
I 

1.2 - 1.399 

I 1.4 - 1.57 I 

Total R’s in Bin 

11 

N (norm. #) 

1.1 

cos emid 

0.995 

13 1.3 0.955 

11 1.1 0.877 
I a 

4 0.4 0.765 

7 0.7 0.621 

4 0.4 0.453 

0.267 

0.086 
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One can calculate exactly the mean value of @for the specified distribution: 

69 = 
jon’2@(t9)dS jo~~2t9cos6W’ 

I ,“” p(ejde 
= 

1 
= [COSO + @sin 0]t’2 

o-i+:-0 1 =0.57 
(2.45) 

By multiplying the frequency of Monte-Carlo events for each eight angular bins from the 
table by the midpoint value of the bins, summing over the 8 bins and then dividing by the 
number of incident particles (50 in this example), one can determine the average value of 
0, < 0>Mc calculated by the Monte-Carlo technique: 

<l%,, = [(l l)(O.l) + (13)(0.3) + (1 l)(OS) + (4)(0.7) + (7)(0.9) + (4)( 1.1)]/50 = 0.48. 

It is easy to see from this simple example that the agreement is quite good in spite of the 
rather poor “statistics”. This example also illustrates that the statistical errors are 
generally larger for the more rare events here represented by large values of 0 (i.e., 0 > 1 
radian). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

8 (radians) 

Fig. 2.7 Hypothetical angular distribution of particle obeying a distribution proportional to the cos 0. 
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V. Brief Review of Magnetic Deflection of Charged Particles 

Particle accelerators of all types operate by utilizing electromagnetic forces to accelerate 
and deflect charged particles. These forces have been well described in detail by other 
authors such as Edwards and Syphers (Ed93) and Carey (Ca87). The forces are 
encountered in accelerator radiation protection most prominently by the need to 
determine if a given deflection by an electric or magnetic field is sufficient to assure that 
a particle beam either interacts with material where such interactions are desired or avoids 
such points of beam loss. The answers to such questions can become interconnected with 
the design of the accelerator and for those purposes, advanced texts such as those cited 
above should be consulted. This is especially true for situations involving the application 
of radiofrequency waves to the particle beams where a full treatment using 
electrodynamics is needed. However, some of the issues are quite simple. 

The force, F (newtons) on a given charge, 4 (Coulombs), at any point in space is given, 
in SI units, by 

(2.46) 

where the electric field, ,!? , is in volts/meter, and the magnetic field g is in Tesla (1 Tesla 
= lo4 Gauss). As always, p is the momentum of the particle in SI units, and t is the time. 
The direction of the force due to the cross product in Eq (2.46) is, of course, determined 
by the usual “right-hand” rule. Application of static, uniform electric fields simply serve 
to accelerate or decelerate the charged particles. In a uniform magnetic field without the 
presence of an electric field, due to the cross product in this equation, any component of 
13 which is parallel to i will not be altered by the magnetic field. Thus, one is only 

concerned with the component of @ which is perpendicular to g. Typically, charged 
particles are deflected by dipole magnets in which the magnetic field is, to high order, 
“uniform” and constant in time, or slowly varying compared with the time during which 
the particle is present. For this situation, if there is no component of @ which is parallel 

to i, the motion is circular and the magnetic force serves to supply the requisite 
centripetal acceleration. The presence of a component of p which is parallel to E results 
in a trajectory which is a spiral rather than a circle. Figure 2.8 illustrates the condition of 
circular motion. Equating the centripetal force to the magnetic force leads to, 

mv 2 

-=qvB, 
R (2.47) 

where m is be the relativistic mass (see Eq. 1.11). Solving for the radius of the circle, R 
(meters), and recognizing that p=mv, one gets, 
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R(meters) = $ (mkS Units) = 
p(GeV / c) 

0.29979qB(Tesla) ’ 
(2.48) 

where q in the denominator is now the number of electronic charges carried by the 
particle. The numerical factor in the denominator is just the mantissa of the numerical 
value of the speed of light in SI units. In practice, at large accelerators, one is often 
interested in the angular deflection of a magnet of length, L, which provides such a 
uniform field orthogonal to the particle trajectory. Such a situation is also shown in Fig. 
2.8. If L is only a small piece of the complete circle (i.e., L << R), one can consider the 
circular path over such a length to be a straight line segment. Doing this, one finds that 
the change in direction, A6 , is given by 

L 0.29979qBL 
Ae=R= 

(radians), 
P 

where the product, BL (Tesla-meters) is commonly referred to the field integral of the 
magnet system andp is in GeV/c. It is evident that BL could just as well be obtained by 
integrating a non-uniform field over the length of the magnet system. This angle of 
deflection can be used to deduce if the particle beam will, or will not, interact with some 
solid object near its path. Edwards and Syphers (Ed93) and Carey (Ca87) go further to 
describe the magnetic deflections provided by more general electromagnetic systems, 
including the effects of quadrupole magnets, and those of higher order which focus 
particle beams. Mathematical methods analogous to those found in the study of 
geometric optics are often used to describe the optics of charged particles. Where time- 
varying electric and magnetic fields are involved, the full complement of Maxwell’s 
equations must, of course, be used to describe the motion of charged particles. 
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l? is perpendicular to the paper and directed toward the reader 

Fig. 2.8 A particle of charge q having momentum p follows a circular path when directed 
perpendicular to a static uniform magnetic field. The figure on the left illustrates this for a 
complete circle. On the right, a particle of such momentum enters a magnet of length L that 
has field integral value of BL. In this situation, LccR and the particle experiences a small 
angular deflection de. The angular deflection is exaggerated in this figure for clarity. 
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Problems 

1. In the discussion of the longitudinal development of electromagnetic showers, 
there are two different formulations (Rossi-Griesen and Bathow, and Van 
Ginneken). Using Van Ginneken’s scaling method, calculate the value of 6 
(g/cm2) for E. = 1000 MeV, 10 GeV, and 100 GeV for copper and lead. 
Determine the number of radiation lengths to which 5, corresponds for each 
material at each energy. 

2. Compare the results of Van Ginneken for the location of the longitudinal shower 
maximum with Bathow’s result for copper and lead at the three energies given in 
problem 1. Is the agreement better or worse as the energy increases? 

3. A hypothetical electron accelerator operates at either 100 MeV or 10 GeV and 
delivers a beam current of 1 PA. Using Table 2.1, calculate the dose equivalent 
rates in both Sv/sec and rem/h at the end of a 300 cm long aluminum beam stop; 
averaged over a 15 cm radius that are due to bremsstrahlung. (The beam stop is a 
cylinder much larger than 15 cm in radius.) Then assume that, in order to save 
space, a high-2 beam stop is substituted. How long of a high-2 beam stop is 
needed to achieve the same dose rates? (Assume lead is a suitable high-Z 
material.) Why is the length of high-Z shield different for the 2 energies? In this 
problem, assume the values in Table 2.1 are valid for energies as low as 0.1 GeV. 

4. In the accelerator and beam stop of problem 3, if the radius of the beam stop is 30 
cm, what is the maximum dose equivalent rate (Sv/s and rem/h) on the lateral 
surface (at contact at r = 30 cm) of the beam stop for both energies, 100 MeV and 
10 GeV, and both materials? Again assume approximate validity at 100 MeV of 
the results. 

5. Calculate the dose equivalent rate outside a 1 meter thick concrete shield 
surrounding a cylindrical tunnel (inner radius 1 meter) in which is located a 
copper target stuck by 1 PA beam of 100 GeV electrons. The geometry should be 
assumed to be optimized for producing giant resonance photoneutrons and the 
calculations should be performed at 8 = 30,60 and 900 (Concrete has p = 2.5 
g/cm3). Express the result as Sv/sec and rem/h. 
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6. This problem gives two elementary examples of Monte Carlo techniques that are 
almost “trivial”. In this problem, obtaining random numbers from a standard table 
or from a hand calculator should be helpful. 

a) First, use a random number table or random number function on a calculator along 
with the facts given about the cumulative probability distribution for exponential 
attenuation to demonstrate that, even for a sample size as small as, say, 15, the 
mean value of paths traveled is “within expectations” if random numbers are used 
to select those path lengths from the cumulative distribution. Do this, for 
example, by calculating the mean and standard deviation of your distribution. 

b) An incident beam is subjected to a position measurement in the coordinate x. It is 
desirable to “recreate” incident beam particles for a shielding study using Monte- 
Carlo. The x distribution as measured is as follows: 

x # 
0 0 

8 2 
9 1 

I 10 0 

Determine, crudely, p(x), P(x) and then use 50 random numbers to “create” 
particles intended to represent this distribution. Then compare with the original 
one which was measured in terms of the average value of x and its standard 
deviation. Do not take the time to use interpolated values of x, simply round off 
to integer values of x for this demonstration. 

7. A beam of protons having a kinetic energy of 100 GeV is traveling down a beam 
line. The beam is entirely contained within a circle of diameter 1 cm. All of the 
beam particles have the same kinetic energy. An enclosure further downstream 
must be protected from the beam or secondary particles produced by the beam by 
shielding it with a large diameter iron block that is 20 cm in radius centered on the 
beam line. The beam passes by this block by being deflected by a uniform field 
magnet that is 3 meters long and is located 30 meters upstream of the iron block. 
Calculate the magnetic field, B, that is needed to accomplish this objective. 
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